Next Artical

  The Design for the Environment (DfE)Printed Wiring Hoard Project is a volun- tary, cooperative effort between the printed wiring board (PWB) industry, the U.S. Environmental Protection Agency (EPA), and other stakeholders dedicated to helping PWB manufacturers reduce risk to their workers and the environment in cost-effective ways. One of the goals of this project is to provide PWB manufacturers with pollution prevention information specific to the PWB industry, so that they are better equipped to incorporate environmental concerns into day-to-day business decisions.

This case study highlights the pollution prevention efforts of a medium-sized PWB manufacturer whose experience shows that implementing viable pollution prevention alternatives can result in economic as well as environmental benefits. In particular, this case study illustrates:

  • How acid recycling and recovery can reduce process wastes, chemical costs, and occupational exposure, and improve process control.
  • How working together with employees in the facility and with equipment vendors and chemical suppliers can improve the potential for pollution prevention success.
  • How the complexity of pollution prevention efforts can range from simple improvements in operation and maintenance to researching and developing a unique in-process recycling unit.
In support of EPA's pollution prevention hierarchy, recycling strategies described in this case study should he investigated only after every attempt has been made to implement source reduction options such as changes in materials, processes, practices, or products.

Company Background

Located in Woburn, Massachusetts, Printed Circuit Corporation (PCC) is a manufacturer if douhle-sided and multilayer printed wiring boards for the electronics industry. PCC employs 300 people and produces 1.8 million surface square feet of board per year in its 100,000 ft2 manufacturing facility. PCC, one of the first companies to join EPA's 33/50 Program, has been active in the area of pollution prevention fair many years. As part of this program, the company eliminated methylene chloride in 1990 and 1,1,1-trichloroethane in 1993 through chemical substitution. More recently, PCC has begun to regenerate ammoniacal etchant, recycle rinse water, and recover copper using an (in-site etchant regeneration system. (Fair more information on etchant regeneration, refer to PWB Case Study 2.)
Motivated by the desirc to reduce waste, save money, and meet requirements of the Massachusetts Toxic' Use Reduction Act (TURA), PCC continues to look for pollution prevention opportunities. TURA requires facilities that use listed chemicals in quantities ahove certain thresholds to inventory those addition to investigating and implementing chemical substitution and other source reduction options, PCC has promoted environmental protection through acid recovery and improved acid management practices, the focus of this case study.

Recovery of Methane Sulfonic Tab Strip

As a surface finish, PCC uses solder-mask-over-bare-copper with hot-air-solder-leveling. This outer layer finish prevents copper oxidation and facilitates solderability during the assembly process, Before panels can then undergo nickle/gold tab plating (also called finger plating, connector plating, or microplating) for electrical conductivity and environmental resistance, the tin/lead solder must he stripped from the panel. In the stripping process, PCC uses methane sulfonic acid (MSA) and applies a reverse electrical current to dissolve tin and lead from the boards.

In the past, PCC changed the acid every 30,000 "ends" (one pass of a circuit panel), or approximately every 6 weeks depending on production schedules. MSA is a very expensive acid (-$21/gal.), and accounted for an average of $17,000/year in raw material costs. Spent solution was sent off-site for disposal at a cost of approximately $5 600/year. PCC recognized an opportunity to conserve acid, prevent hazardous waste generation, and lower employee exposure to corrosive materials using a relatively simple and efficient in-process recycling technology called diffusion dialysis
Diffusion dialysis is a technology that uses an anion exchange membrane allowing anions and the hydrogen ions (due to their small size and mobility) to pass through into a water stream that is running counter current to the flow of the spent acid. The acid (e.g. HCl, H2SO4) is reconstituted on the water side of the membrane and is directed back to the process tank. The metal-rich acid-depleted stream can he sent to on-site waste treatment or shipped off-site for treatment. Fresh acid in proportion to the unrecovered amount is added to the bath to plating bath pre-dip, and microtech that is treated on-site.

At PCC, the diffusion dialysis recycling unit is hard-piped to the MSA tab stripping bath. The company first evaluated a 5 gallon/day recycling unit in an off-line pilot test. They assessed parameters such as acid recovery and metal rejection rates, as well as the stripping rate of the recovered acid. PCC then proceeded to evaluate the system on-line. After working with the vendor to fine-tune metal rejection and acid recovery rates, PCC was able to maintain a constant solution level in the stripping bath.
Based on the project's costs and savings, as outlined below, the payback on the investment was approximately 6 to 7 months.

Annual Saavings:

Process chemicals $14,500
Waste disposal $5,600

Other Benefits:
  • Reduces long-term liability associated with hazardous waste shipments.
  • Reduces employee exposure associated with bath dumping.
Capital Costs:
Pure Cycle AJ-10 $10,800
Acid Recycling System

Concerns Disadvantages:
  • Metals stripped from the board must still be either sent off-site in a low acid matrix (same volume), or treated in the on-site wastewater treatment facility. Based on the total volume of strip generated and the metal content of the spent material, the background lead concentration in the influent to the treatment facility rose <1 ppm; however, PCC's treatment facility is able to treat this increase such that the discharge still meets regulatory standards.
  • Labor costs will actually increase slightly because the solution must be analyzed and additions made, if necessary.
Approximately 6 -- 7 months

Microetchant Regeneration

Microetching is a ubiquitous process found as a preclean step for many of the stages of PWB manufacturing. Microetching removes anywhere from 10 -- 70 microinches of copper to rid the panels of oxidation prior to the subsequent process, such as pattern plate, soldermask application, or hotair-solder-leveling. PCC generally uses a sulfuric acid/hydrogen peroxide solution as the microetchant.
PCC had been decanting 138 gallons of spent microetch solution per week from the electroless copper line and 35 gallons/week from the black oxide line. This spent solution was being sent off-site for recycling. In order to conserve sulfuric acid and prolong bath life, PCC and a chemical vendor worked together to install an electrolytic plate-out cell to plate out copper from the microetch. Electrolytic recovery has been used to recover valuable metals from bath rinses, but in this case, it is the regenerated microetch and the associated savings that motivated PCC to explore this recycling technique.

This setup uses dimensionally stable anodes and cheap scrap laminate as the cathode onto which the copper is plated. The pumps are hard-piped fair hatch transfer from the microetch process bath to the electrolytic plate-out cell. PCC chose only the electroless copper and the black oxide lines for microetchant regeneration because other preclean processes do not have high copper concentrations, due to a high rate of copper dragout.

The continuous-hatch plate-out system allows for better process control because the copper concentration remains more stable, which in turn provides for a more stable etching rate. In addition, the copper ion concentration in the microetch is lowered to 25 -- 45 g/l, from an average of 45 -- 80 g/l by the old decant method. The reduced copper concentration has the effect of decreasing the average amount of copper dragged into the subsequent rinse and then into waste treatment by about 50%. More importantly, the spent microetch is no longer decanted from these processes each week and sent off-site. Nuit only are disposal and materials handling costs cut, but employee exposure is reduced.

Better Process Control Through Microetch Regeneration

Annual Savings: $1,750
Chemical purchases $15,625
Off-site transportation and recycling 500 amp rectifier $2,500
2 double diaphragm pumps $1,500
4 dimensianally stable anode $4,000

Annual Operating Costs:

Energy costs $600
Labor (1 hr. every other day) $2500

5 months, with annual operating costs of -$3100

Full Panel Solder Strip Recycllng

Recycling spent solution is not always as easy as hooking up a unit and adding fresh solution periodically. It may require extensive experimentation and teamwork. Understanding the chemistries involved in the process is the key to regenerating bath solutions successfully. After outer layer etching, PCC strips the tin/lead etch-resist with a nitric acid and ferric nitrate solution. The nitric acid is used to strip the tin/lead layer, and the ferric nitrate compo- nent is necessary to remove the intermetallic layer that forms when the tin and copper diffuse into each other. These solutions also contain wetting agents, copper etching inhibitors, and anti-tarnishing agents. PCC currently has a $15,000 grant from Massachusetts Toxics Use Reduction Institute to study the feasibility of recycling the nitric acid stripping solution using diffusion dialysis. The project involves the use of diffusion technology to separate the stripped metals from the stripping solution, rendering it reusable. This would be a continuous, on-line recycling system similar to that used for MSA recovery. The major roadblock to this process is the presence of an iron component in the proprietary stripping solution. This component is necessary in order to dissolve the intermetallic layer that forms when the solder (tin/lead) is plated onto the copper surface of the PWBs. Recall from the discussion of MSA recycling, however, that the diffusion dialysis process will reject from the spent solution all metals, including the iron, which is essential to the stripping process. PCC believes it may be possible to determine the rate of loss of iron from the diffusion dialysis process and replace the iron with a concentrated replenisher. The difficulties here will be able to deter- mine the additive package of chemical constituents that would replace the compo- nents lost from the diffusion dialysis process. The next step will be to determine if the project is technically and economically feasible. PCC will base its decision on the cost of the chemical vendor's additive package, the cost savings from the recycling process, and other factors such reduced risk of exposure. If the project is deemed feasible, the recycling unit would be attached directly try the solder strip sump. The reclaimed solution from the unit would be sent back to the sump. The reject would be plumbed to waste treatment. PCC would then analyze the solution regularly, making additions of the package prepared by the vendor as necessary. Stripping rate and copper etch rate would also be monitored,along with nitric acid reclaim efficiency and metals rejection. Pollution Prevention Through Process Control In focusing on new technologies for recovering spent materials or other source reduction opportunities, a company may overlook simple changes in operations and maintenance that can yield great benefits. Despite its success with pollution prevention over the past seeveral years, PCC learned an important lesson about the need to understand its processes to avoid unnecessary waste. PCC's story, which is described below, illustrates how a thorough process evaluation helped the company solve problems in its preclean step for primary immage dry-film photoresist lamination. In the preclean step, PCC uses a 10% sulfuric acid spray and aluminum oxide scrubbing in a conveyorized spray process This process accounted for 50% of the sulfuric acid used at the plant. A PCC environmental engineer initiated an investigation of the preclean process after the production manager first asked the chemistry lab personnel to dump and replenish the sulfuric acid solution twice a day, then three times a day instea of once Next the environmental engil By correcting the mechanical failures, increasing the maintenance schedule, and improving training of the line operators, PCC was actually able to reduce the number of bath dumps required to once a week. Not only was the hath dumped less frequently, but through these simple improvements, PCC has also cut its sulfuric acid usage by more than 85% for the process. This translates to a savings of over 26 tons of sulfuric acid per year and over $12,000 in chemical costs. Thus, by working together and understanding the chemical and mechanical components involved in any process, the chances for pollution prevention success improve dramatically.

The Design for the Environment (DfE) Approach

This case study describes how teamwork and thorough process evaluations helped one company reduce waste, save money, and improve process control through acid recovery and improved acid management. The EPA's Design fair the Environment Program encourages you to evaluate systematically the technologies, practices, and procedures in your facility that may affect the environment. Our goal in working with the PWB manufacturers is to help you to make informed choices, now and in the future, by promoting the search for and evaluation of cleaner alternatives.


EPA's Design for the Environment Program would like to thank Printed Circuit Corporation for participating in this case study and PWB DfE Project articipants from the following organizations who provided advice and guidance: Circuit Center Inc., EPA -- New England, Institute for Interconnections and Packaging Electronic Circuits, Morton International, and National Security Agency.

Mention of product trade names does not constitute endorsement or recommendation of use.

The DfE Program wants your feedback. If you have implemented any of the ideas in this case study series, please tell us about it by calling the DfE Program at 202-260-1678 via via email at

Home Page - Articles - Charts & Tables - Questionnaire - Pilot Test - Anodizing